THE $(\varphi, 1)$ RECTIFIABLE SUBSETS OF EUCLIDEAN SPACE

BY SAMIR KAR¹

ABSTRACT. In this paper the structure of a subset $E \subset \mathbb{R}^n$ with $H^1(E) < \infty$ has been studied by examining its intersection with various translated positions of a smooth hypersurface B. The following result has been established:

Let B be a proper (n-1) dimensional smooth submanifold of \mathbb{R}^n with nonzero Gaussian curvature at every point. If $E \subset \mathbb{R}^n$ with $H^1(E) < \infty$, then there exists a countably 1-rectifiable Borel subset R of \mathbb{R}^n such that $(E \sim R)$ is purely $(H^1, 1)$ unrectifiable and $(E \sim R) \cap (g + B) = \emptyset$ for almost all $g \in \mathbb{R}^n$.

Furthermore, if in addition E is H^1 measurable and $E \cap (g + B) = \emptyset$ for H^n almost all $g \in \mathbb{R}^n$ then $H^1(E \cap R) = 0$. Consequently, E is purely $(H^1, 1)$ unrectifiable.

Introduction. The study of the geometric structure of subsets of \mathbb{R}^n relative to properties of their projections on k-dimensional linear subspaces has always played a central role in the progress of geometric measure theory. For example, the proof in [FF] of the existence of solutions for Plateau's problem and the minimal surface problem is dependent on this structure theory. The first results in this direction were obtained by Besicovitch in [BE], where he characterized 1-dimensional rectifiable subsets of \mathbb{R}^2 in terms of their projection properties. His results were extended by Federer [F2] to subsets of \mathbb{R}^n and by Brothers [B] to subsets of homogeneous spaces.

Federer showed that if $E \subset \mathbb{R}^n$ with $H^k(E) < \infty$ then there exists a countably k-rectifiable Borel subset R of \mathbb{R}^n such that $E \sim R$ is purely (H^k, k) unrectifiable and $L^k[p(E \sim R)] = 0$ for almost all orthogonal projections $p \colon \mathbb{R}^n \to \mathbb{R}^k$ where L^k is the Lebesgue measure in \mathbb{R}^k .

Brothers generalized Federer's results to subsets of a smooth n-dimensional Riemannian manifold X with a transitive group of isometries G. In order to make the transition from \mathbb{R}^n to X it was necessary to restate the projection properties without referring to projections. This he achieved by replacing

Received by the editors August 10, 1976.

AMS (MOS) subject classifications (1970). Primary 28A75; Secondary 49F20.

Key words and phrases. Geometric measure theory, structure theory, Gaussian curvature, countably k-rectifiable, purely (H^k, k) unrectifiable, k-dimensional Hausdorff measure, Suslin sets, k-dimensional upper density of φ at u.

¹This research contains the author's main result in his Ph.D. dissertation at Indiana University (1975).

orthogonal projections of $A \subset \mathbb{R}^n$ into \mathbb{R}^k with intersections $A \cap g(P)$ where g is an isometry of \mathbb{R}^n and P a fixed (n-k)-dimensional linear subspace. For example the statement "p(A) has Lebesgue measure zero for almost all orthogonal projections $p \colon \mathbb{R}^n \to \mathbb{R}^k$ " is equivalent to " $A \cap g(P)$ is empty for almost all isometries g." Thus his main result has the following form:

Let G be a Lie group of isometries of X with dim G = n(n+1)/2 and suppose G acts transitively on X. Let B be a fixed (n-k)-dimensional smooth submanifold of X. If $E \subset X$ with $\mathbf{H}^k(E) < \infty$ then there exists a countably k-rectifiable Borel subset R of X such that $(E \sim R)$ is purely (\mathbf{H}^k, k) unrectifiable and

$$(E \sim R) \cap g(B) = \emptyset$$

for almost all $g \in G$.

One of the central features of the proof of the above theorem is the use of the fact that the isotropy group at a point $0 \in X$ acts on the tangent space at 0 as either the orthogonal group or the special orthogonal group. We also note that dim G = n(n + 1)/2 implies in the Euclidean case that G is either the full group of isometries or the component of this group which contains the identity. Further, if X is connected and dim G = n(n + 1)/2, then X must be of constant curvature. Thus it is natural to ask if it is possible to obtain similar results with less restrictive assumptions on G; that is, can Brothers' results hold if the dimension of G is less than n(n + 1)/2?

Notice that if we take k = 1 and $B = S^{n-1} \subset \mathbb{R}^n$ in Brothers' theorem then it follows that for almost all translations g of \mathbb{R}^n

$$(E \sim R) \cap g(B) = \emptyset.$$

On the other hand, standard examples (see for example [F1, 3.3.19]) show that this may not be true if B is a hyperplane. Based upon these examples together with the structure of the proof of his theorem, Brothers conjectured that if G is the group of translations of $X = \mathbb{R}^n$ then his result will hold at least for (H¹, 1) rectifiability provided it is assumed that the Gaussian curvature of B does not vanish. In this paper we prove this conjecture. Our main result is the following:

THEOREM 1. Let B be a proper (n-1)-dimensional smooth submanifold of \mathbb{R}^n with nonzero Gaussian curvature at every point. If $E \subset \mathbb{R}^n$ with $H^1(E) < \infty$, then there exists a countably 1-rectifiable Borel subset R of \mathbb{R}^n such that $(E \sim R)$ is purely $(H^1, 1)$ unrectifiable and

$$(E \sim R) \cap (g + B) = \emptyset$$

for almost all $g \in \mathbb{R}^n$.

Furthermore, if in addition E is H^1 measurable and $E \cap (g + B) = \emptyset$ for

 \mathbf{H}^n almost all $g \in \mathbf{R}^n$ then $\mathbf{H}^1(E \cap R) = 0$. Consequently, E is purely $(\mathbf{H}^1, 1)$ unrectifiable.

Theorem 2 is an extension of this result involving measures more general than H^1 .

The problem of extending these results to the general case where X is a Lie group with an invariant metric is difficult because of noncommutativity. On the other hand, our results clearly hold when X is a torus, hence for the case where X is an Abelian Lie group. In a subsequent paper we will investigate the possibility of extending our results to the case where k > 1.

I am indebted to Professor John Brothers for his continuing help, advice and encouragement during the preparation of this paper. He has always been a source of inspiration.

Preliminaries. The purpose of this section is to fix basic notation and terminology; more details may be found in [F1].

If M is an l-dimensional manifold of class 1 and $u \in M$, then $T_u(M)$ is the l-dimensional real vector space of tangent vectors of M at u.

For each finite dimensional vector space V and $l = 0, 1, 2, \ldots$, dim V, $\Lambda_l(V)$ is the associated vector space of l vectors. Furthermore,

$$\Lambda_*(V) = \bigoplus_{l=0}^{\dim V} \Lambda_l(V)$$

is the corresponding exterior algebra, with exterior multiplication Λ .

Suppose M and N are manifolds of class 1 and $f: M \to N$. If $u \in M$, w = f(u) and f is differentiable at u, the differential of f at u is a linear transformation

$$f_{\#}(u) \colon \mathbf{T}_{u}(M) \to \mathbf{T}_{w}(N).$$

 $f_{\#}(u)$ can be extended to a unique algebra homomorphism

$$f_{\#}(u): \Lambda_{*}[\mathbf{T}_{u}(M)] \to \Lambda_{*}[\mathbf{T}_{w}(N)].$$

If M and N are Riemannian manifolds and

$$r = \inf \{ \dim M, \dim N \}$$

then the Jacobian of f at u is

$$Jf(u) = \sup\{|f_{\#}(u)(v)| : v \in \Lambda_{r}[T_{u}(M)], |v| = 1\}$$

where the indicated norm is induced by the metric on M and N.

If $u = (u_1, \ldots, u_n)$ and $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$, the inner product of u and w is $u \cdot w = \sum_{i=1}^n u_i \cdot w_i$.

 e_1, \ldots, e_n are the standard orthonormal basis vectors of \mathbb{R}^n .

Let ϕ be a nonnegative measure on a Riemannian manifold M such that

closed sets are ϕ measurable. In particular, \mathbf{H}^l is the *l-dimensional Hausdorff* measure on M.

The family of Suslin subsets of M contains the Borel subsets of M and has the following properties:

Each Suslin set is ϕ measurable.

If $\{F_i\}$ is a countable family of Suslin sets, then $\bigcup_{i=1}^{\infty} F_i$ and $\bigcap_{i=1}^{\infty} F_i$ are Suslin sets.

If N is a smooth manifold and $f: M \to N$ is continuous, then f(S) and $f^{-1}(T)$ are Suslin sets whenever S and T are Suslin subsets of M and N respectively.

If μ measures Y and $A \subset Y$, then $\mu \sqsubseteq A$ is the measure on Y defined by the formula

$$\mu \mid A(S) = \mu(A \cap S)$$
 for $S \subset Y$.

If $f: Y \to Z$, then $f_{\pm}(\mu)$ is the measure on Z defined by

$$f_{\#}(\mu)(S) = \mu [f^{-1}(S)]$$
 for $S \subset Z$.

 $R \subset M$ is k-rectifiable if there exists a Lipschitzian function mapping some bounded subset of \mathbb{R}^k onto R.

 $R \subset M$ is countably k-rectifiable if R is the union of a countable family of k-rectifiable sets.

 $E \subset M$ is countably (ϕ, k) rectifiable if there exists a countably k-rectifiable set R with $\phi(E \sim R) = 0$.

 $E \subset M$ is (ϕ, k) rectifiable if $\phi(E) < \infty$ and E is countably (ϕ, k) rectifiable.

 $E \subset M$ is purely (ϕ, k) unrectifiable if E contains no k-rectifiable set R with $\phi(R) > 0$.

$$\mathbf{U}_{k}(u, r) = \mathbf{R}^{k} \cap \left\{ w \colon |w - u| < r \right\}$$

for r > 0, $u \in \mathbb{R}^k$.

If r > 0, s > 0, $u \in \mathbb{R}^n$ and $Y \subset \mathbb{R}^n$, then

$$X(u, r, Y, s) = \mathbb{R}^n \cap \{w: \operatorname{dist}(w, Y) < s \operatorname{dist}(w, u)\} \cap U_n(u, r).$$

Throughout this paper B will denote a proper (n-1)-dimensional submanifold of class ∞ of \mathbb{R}^n with nonzero Gaussian curvature at every point. If s > 0 and $g \in -B$ denote

$$K_{g,s} = \{h: |h - g| < s\} \cap (-B).$$

Also,

$$K_{g,s}(B) = \{h + b : h \in K_{g,s}, b \in B\}.$$

If $F: U \to \mathbb{R}$ is a C^2 function, where U is an open subset of \mathbb{R}^n , we denote

$$D_i F(x) = \partial F(x) / \partial x_i, \qquad i = 1, 2, \ldots, n.$$

$$D_{ii}F(x) = \frac{\partial^2 F(x)}{\partial x_i \partial x_j}, \quad i, j = 1, 2, \dots, n.$$

We will denote by $f_0: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ the map defined by

$$f_0(a,b)=a-b.$$

If $A \subset \mathbb{R}^n$, then $S_{A,1}$ is the set of $(a, b) \in \mathbb{R}^n \times B$ such that for some $\varepsilon > 0$

$$\lim_{s\to 0^+} \sup_{0< r<\varepsilon} \phi \Big[A \cap X(a, r, a-b+B, s) \Big] (rs)^{-1} = 0.$$

 $S_{A,2}$ is the set of $(a, b) \in \mathbb{R}^n \times B$ such that for all $\varepsilon > 0$

$$\lim_{s\to 0^+} \sup_{0< r<\varepsilon} \phi \big[A\cap X(a,r,a-b+B,s)\big] (rs)^{-1} = \infty.$$

$$S_{A,3} = \mathbb{R}^n \times B \cap \{(a,b): a \in \text{Clos}[A \cap (a-b+B) \sim \{a\}]\}.$$

LEMMA 1. For any $g \in -B$ there exist positive constants r_1 , s_1 , α , β such that if $0 < s < s_1$, then

(i)
$$X(0, r_1, g + B, s) \subset K_{g,\alpha s}(B)$$
,

(ii)
$$X(0, \infty, g + B, s) \supset K_{g,\beta s}(B) \sim \{0\}.$$

PROOF. Without loss of generality we may assume $g = 0 \in B$. By a proper choice of coordinate axes we may assume that

$$B \cap U_n(0, 1) = \{(x, f(x)): x \in U\},\$$

where $0 \in U$, U is an open subset of \mathbb{R}^{n-1} which contains $\{x \in \mathbb{R}^{n-1}: |x| \le 1/2\}$ and $f: U \to \mathbb{R}$ is of class C^{∞} and such that

(1)
$$f(0) = 0$$
, $D_i f(0) = 0$ for $i = 1, 2, ..., n-1$.

We may also assume that f is Lipschitzian and if $|x| \le 1/2$, then

$$|f(x)| \le |x|,$$

(3)
$$|D_i f(x)|, |D_{ij} f(x)|, |D_{ilm} f(x)| < Cn^{-3}$$

for j, l, m = 1, 2, ..., n - 1, where C > 1.

Our assumption that the Gaussian curvature does not vanish at any point of B leads to the fact [KN, Volume 2, p. 17] that

(4)
$$\det(D_{ij}f(0)) \neq 0, \quad l, j = 1, 2, \ldots, n-1.$$

Let L be the linear transformation of \mathbb{R}^{n-1} with the matrix $(D_{ij}f(0))$. Then there exists $0 < V \le C/2$ such that whenever $y \in \mathbb{S}^{n-2} \subset \mathbb{R}^{n-1}$,

(5)
$$|L(y) \cdot e_j| \geqslant V \quad \text{for some } j \in \{1, 2, \dots, n-1\}.$$

PART 1. Fix $x, x_0 \in \mathbb{R}^{n-1}$ and $s \in \mathbb{R}$ such that $0 < |x_0| < (V/8C), |x - x_0| < (sV|x_0|/16C),$ and 0 < s < (V/8Cn). Then the set of numbers $f(x + t) - f(t) - f(x_0)$ corresponding to $t = t_l e_l$ and $l \in \{1, 2, ..., n - 1\}$ with $|t_l| \le s$ contains the interval $\{r: |r| \le sV|x_0|/16\}$.

Proof. Let us consider the sets

$$S_1 = \{x: 0 < |x| < (V/4C)\} \cap \mathbb{R}^{n-1},$$

$$S_2 = \{t: 0 < |t| < (V/2C)\} \cap \mathbb{R}^{n-1}.$$

Let $x \in S_1$, $t \in S_2$. Expanding f(x + t) about x and f(t) about 0, we have

(6)
$$f(x+t) - f(t) = f(x) + Df(x)(t) + \sum_{j,l=1}^{n-1} t_j t_l R_{jl},$$

where

$$R_{jl} = \int_0^1 (1-\theta) \{ D_{jl} f(x+\theta t) - D_{jl} f(\theta t) \} d\theta.$$

By assumption (3)

$$|R_{il}| \leq |x|C/2.$$

Also,

(8)
$$Df(x)(t) = \sum_{j=1}^{n-1} t_j \left[\sum_{l=1}^{n-1} x_l D_{jl} f(0) + \frac{1}{2} \sum_{m,l=1}^{n-1} x_m x_l D_{jml} f(\theta_j x) \right]$$

where $0 \le \theta_i \le 1$.

Now let $y = (x/|x|) \in \mathbb{S}^{n-2}$. Then from (5), for some l

$$(9) 0 < V < \left| \sum_{k} \left(x_k / |x| \right) D_{lk} f(0) \right|.$$

Consequently by setting $t_j = 0$ for $j \neq l$ in (8), we get

$$(10) t_l D_l f(x) = |x| t_l H,$$

where

$$H = \sum_{k} (x_k/|x|) D_{lk} f(0) + (|x|/2) \sum_{k,m} (x_m/|x|) (x_k/|x|) D_{lmk} f(\theta_l x).$$

By (9) and (3), we conclude that

$$|H| > V - V/8 > V/2.$$

Therefore from (6), (10) we get

(11)
$$f(x+t) - f(t) - f(x) = |x|t_{l}H + t_{l}^{2}R_{ll} \text{ with}$$
$$|H| > V/2 \text{ and } |R_{ll}| < (|x|C/2) \text{ for}$$
$$t = t_{l}e_{l} \in S_{2} \text{ and } x \in S_{1}.$$

Now let x, x_0, s be such that $0 < |x_0| \le (V/8C), |x - x_0| < (sV|x_0|/16C)$ and 0 < s < (V/8Cn). Notice that $x \in S_1$. Also,

$$|f(x) - f(x_0)| \le (sV|x_0|/16).$$

Now by (11), for $t = t_l e_l \in S_2$,

$$f(x+t)-f(t)-f(x_0)=|x|t_lH+t_l^2R_{ll}+f(x)-f(x_0),$$

where |H| > V/2 and $|R_{II}| \le |x|C/2$.

Suppose H > 0. Since s < V/2C, $t = se_l \in S_2$. By setting $t_l = s$, we obtain

$$f(x+t) - f(t) - f(x_0) > (|x|/2)(Vs - Cs^2) - sV|x_0|/16$$

> (|x_0|/2)(1/2)s(V - Cs) - sV|x_0|/16 > sV|x_0|/16.

Similarly, putting $t_i = -s$, we obtain

$$f(x + t) - f(t) - f(x_0) \le -sV|x_0|/16$$
.

Since for fixed x, x_0 , s, $f(x + t) - f(t) - f(x_0)$ with $t = t_l e_l$ is a continuous function of t_l on the interval [-s, s], we conclude that Part 1 holds. Finally, in the case where H < 0 we reach the same conclusion by replacing s by -s.

PART 2. $K_{0,4s}(B \cap U_n(0, 1)) \supset U_n((x_0, f(x_0)), rVs/64C)$ where 0 < s < V/8Cn, $0 < |x_0| < V/8C$ and $r = |(x_0, f(x_0))|$.

PROOF. Let

$$S_{x_0} = \mathbf{R}^{n-1} \cap \left\{ x: |x - x_0| < sV|x_0|/16C \right\}$$

$$\times \mathbf{R} \cap \left\{ \xi: |\xi - f(x_0)| < (sV|x_0|/16)(1 - sV/8C) \right\}.$$

Since $|x_0| < 1/2$, $r < 2|x_0|$ by (2). Also,

$$(Vs|x_0|/16)(1 - sV/8C) > rVs/64C.$$

Thus

(13)
$$U_n((x_0, f(x_0)), rVs/64C) \subset S_{x_0}.$$

So, let $(x, \xi) \in S_{x_0}$. We observe that $x \in S_1$. Since $|\xi - f(x_0)| < sV|x_0|/16$, by Part 1 there exists $t = t_1e_1$ such that $|t| \le s$, and

$$f(x + t) - f(t) - f(x_0) = \xi - f(x_0).$$

Notice that by (2) $(-t, -f(t)) \in K_{0.4s} \subset -B$. Also,

$$(x+t,f(x+t)) \in B \cap \mathbf{U}_n(0,1).$$

Thus

$$(x, \xi) \in K_{0.4s}(B \cap U_n(0, 1)).$$

This together with (13) establishes our claim.

Part 3. $K_{0,4s}(B) \supset X(0, V/16C, B, sV/128C)$ where 0 < x < V/8nC.

PROOF. If $w \in X(0, V/16C, B, sV/128C)$, then there exists $b \in B$ such that $|b - w| < r_0 sV/128C$, where $r_0 = |w|$. Now $r = |b| > |w| - |b - w| > r_0/2$ and $r < 2r_0 < V/8C$. Therefore $b = (x_0, f(x_0))$ with $|x_0| < V/8C$. Hence

$$w \in U_n((x_0, f(x_0)), rsV/64C) \subset K_{0.4s}(B \cap U_n(0, 1))$$

by Part 2.

From Part 3 we get (i) of Lemma 1 immediately.

Turning to the proof of (ii) of the lemma, we claim that

(14)
$$K_{0.2s}(B) \sim U_n(0, 1/16) \subset X(0, \infty, B, 32s),$$

where 0 < s < V/8nC < 1/32. Indeed, if $u \in K_{0,2s}(B) \sim U_n(0, 1/16)$, then u = g + w; $g \in K_{0,2s}$, $w \in B$. But then

$$[\operatorname{distance}(u, B)]/|u| \leq 32s.$$

Next let $u_1 \in K_{0,2s}(B) \cap U_n(0, 1/16)$. This means that $u_1 = g_1 + w_1$, with $g_1 \in K_{0,2s}$ and $w_1 \in B$, and $|u_1| < 1/16$. Therefore

(15)
$$K_{0,2s}(B) \cap U_n(0, 1/16) \subset K_{0,2s}(B \cap U_n(0, 1/8)).$$

So let us assume $u \in K_{0,2s}(B \cap U_n(0, 1/8))$. Then u = (t, -f(-t)) + (x, f(x)) where $(t, -f(-t)) \in K_{0,2s}$ and $(x, f(x)) \in B \cap U_n(0, 1/8)$. Write y = x + t, so that |y| < 1/4. Thus $y \in U$. Also,

$$f(x) - f(-t) = f(x) - f(x - y)$$

= $f(y) + Df(y)(x - y) + \sum_{i,l} (x_i - y_i)(x_l - y_l)R_{jl}$

where

$$R_{jl} = \int_0^1 (1 - \theta) \{ D_{jl} f(y + \theta(x - y)) - D_{jl} f(\theta(x - y)) \} d\theta$$

and, as in (7), $|R_{jl}| \le |y|C/2$. Note that $|D_if(y)| \le C|y|$. We thus conclude that

$$|f(x) - f(-t) - f(y)| \le C|y|2sn + n^2(2s)^2|y|C/2.$$

Writing v = (y, f(y)) we find that

(16)
$$|f(x) - f(-t) - f(y)| < 4|v|Cn^2s,$$

hence distance(u, B) $\leq |u - v| < 4|v|Cn^2s$. Since $|v| \leq 2|u|$ by (2) we conclude that $u \in X(0, \infty, B, 8Cn^2s)$. Hence

$$K_{0,2s}(B) \cap U_n(0, 1/16) \subset X(0, \infty, B, 8Cn^2s),$$

by (15). This together with (14) establishes (ii).

LEMMA 2. Let $g \in -B$. Then there exist positive numbers r_2 , s_2 , H_1 , H_2 and $\delta > 1$ such that if $0 < s < s_2$ and $0 \neq w \in K_{g,s}(B) \cap U_n(0, r_2)$, then

(i)
$$\mathbf{H}^{n-2}[(w-B) \cap K_{g,\delta s}] \ge H_1 s^{n-2}$$
,

(ii)
$$\mathbf{H}^{n-2}[(w-B)\cap K_{g,s}] \le H_2 s^{n-2}$$
.

PROOF. Assuming $g = 0 \in B$ and choosing f and U as in the proof of

Lemma 1 we denote $U_0 = -U$ and define $h: U_0 \to \mathbb{R}$ by h(x) = -f(-x). Thus

$$-B \cap U_n(0, 1) = \{(x, h(x)) : x \in U_0\}.$$

Since $det(D_{ij}h(0)) \neq 0$, we can (with the use of an orthogonal change of coordinates) assume h has a Taylor expansion of the form

(1)
$$h(x) = \sum_{i=1}^{n-1} k_i x_i^2 + \sum_{i,j,k=1}^{n-1} \alpha_{ijk}(x) x_i x_j x_k,$$

with $k_i \neq 0$, $|\alpha_{iik}|$ and $|D_i\alpha_{iik}|$ bounded and C^{∞} on U_0 . We will write

$$K_0 = \min(|k_1|, \dots, |k_{n-1}|) > 0$$
 and $K = \max(1, |k_1|, \dots, |k_{n-1}|)$.

For i = 1, 2, ..., (n - 1) we will write $\pi_i x = (x_1, ..., x_{i-1}, x_{i+1}, ..., x_{n-1})$ $\in \mathbb{R}^{n-2}$ whenever $x = (x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1}) \in \mathbb{R}^{n-1}$.

PART 1. There exist C > 2, $0 < \gamma < \min(1/16, K_0/[4C(2n)^{1/2}])$, and a C^{∞} function Φ defined on

$$\Omega = \mathbf{R}^{n-1} \times \mathbf{R} \times \mathbf{R}^{n-1} \times \mathbf{R}$$

$$\cap \{(x, \rho, y, \eta) : |x| < 1/4, |\rho| < 1/4, |y|^2 + |\eta|^2 = 1\}$$

such that if $0 < s < \gamma$ and $0 \neq w = \rho(y, \eta) \in K_{0,s}(B) \cap U_n(0, \gamma)$ with $|y|^2 + |\eta|^2 = 1$, then the following are true:

- (i) $(w B) \cap K_{0,s} = \{(x, h(x)) \in K_{0,s} : \Phi(x, \rho, y, \eta) = 0\}.$
- (ii) There exists $i \in \{1, 2, ..., n-1\}$ (which depends only on y) such that

$$|y_i| > (2n)^{-1/2}$$

and for $|x| \leq \gamma$,

$$|D_i\Phi(x, \rho, y, \eta)| \ge 1/C$$

and

$$\left|D_j\Phi(x,\rho,y,\eta)/D_i\Phi(x,\rho,y,\eta)\right|\leqslant C\quad for j=1,2,\ldots,n-1, j\neq i.$$

(iii) If for i = 1, 2, ..., n - 1 we write $\Phi_i(x_i, \rho, y, \eta) = \Phi(x, \rho, y, \eta)$ where $x = (0, ..., 0, x_i, 0, ..., 0), |x_i| < 1/4$, then there exist C^{∞} functions ϕ_i , g_i , each having domain $\mathbf{R} \times \mathbf{R} \times \mathbf{R}^{n-1} \times \mathbf{R} \cap \{(x_i, \rho, y, \eta): |x_i|, |\rho| < 1/4, |y|^2 + |\eta|^2 = 1\}$ such that $|g_i|, |\phi_i|, |D_1\phi_i| \le C$ and

$$\Phi_{i}(x_{i}, \rho, y, \eta) = 2k_{i}x_{i}y_{i} - \rho \sum_{i=1}^{n-1} k_{i}y_{i}^{2} - \eta + g_{i}(x_{i}, \rho, y, \eta)x_{i}^{2} + \rho \phi_{i}(x_{i}, \rho, y, \eta).$$

PROOF. By choosing ρ_0 sufficiently small $(0 < \rho_0 < 1/8)$ we may assume that

$$B \cap U_n(0, 2\rho_0) \sim \{0\} \subset X(0, \infty, T_0(B), 1/8).$$

Now if $u \in X(0, \infty, B \cap U_n(0, 2\rho_0), s_0)$ where $0 < s_0 < 1/8$ then there exists $0 \neq b \in B \cap U_n(0, 2\rho_0)$ such that $|u - b| < |u|s_0$. But by the above assumption there exists $w \in T_0(B)$ such that $|b - w| < |b|/8 \le 9|u|/64$. Hence $u \in X(0, \infty, T_0(B), 1/2)$. Assuming $s_0 < s_1$, we apply Lemma 1(ii) with $\beta s = \rho_1 = \min(\beta s_0, \rho_0)$ to obtain

(2)
$$\left[K_{0,\rho_1}(B \cap U_n(0,2\rho_1)) \right] \sim \{0\} \subset X(0,\infty,T_0(B),1/2).$$

Consider now $x \in \mathbb{R}^{n-1}$ and $(t, \theta) \in \mathbb{R}^{n-1} \times \mathbb{R} = \mathbb{R}^n$ with $|(t, \theta)|, |x| < 1/4$. Applying (1) and writing $(t, \theta) = \rho(y, \eta)$ where $|(y, \eta)| = 1$, we obtain

(3)
$$h(x) - h(x - t) - \theta = \rho \Phi(x, \rho, y, \eta)$$

where

$$\Phi(x, \rho, y, \eta) = \sum_{i=1}^{n-1} 2k_i x_i y_i - \rho \sum_{i=1}^{n-1} k_i y_i^2 - \eta + R(x, \rho, y, \eta)$$

with

$$R(x, \rho, y, \eta) = \sum_{i,j,k=1}^{n-1} \alpha_{ijk}(x) \left\{ -y_i x_j x_k - y_k x_i x_j - y_j x_i x_k + \rho x_i y_j y_k + \rho x_j y_i y_k + \rho x_k y_i y_j - \rho^2 y_i y_j y_k \right\}$$

$$+ \sum_{i,j,k,l=1}^{n-1} \left[\left\{ y_l \int_0^1 D_l \alpha_{ijk} (\tau x + (1-\tau)(x-\rho y)) d\tau \right\} \times (x_i - \rho y_i)(x_j - \rho y_j)(x_k - \rho y_k) \right].$$

Obviously Φ is C^{∞} with domain

$$\Omega = \{(x, \rho, y, \eta): |x| < 1/4, |\rho| < 1/4, |y|^2 + |\eta|^2 = 1\}.$$

For each $i = 1, 2, \ldots, (n - 1)$ we write

$$D_i \Phi = \partial \Phi / \partial x_i = 2k_i y_i + T_{i,x} + T_{i,\rho}$$

where $T_{i,x}$ stands for the sum of all terms containing at least one x_j but not ρ as a factor and $T_{i,\rho}$ stands for the sum of all terms with ρ as a factor. Since $|\alpha_{ijk}|$, $|D_i\alpha_{ijk}|$ are all bounded, by assuming |x|, $|\rho| < \gamma' < 1/4$ we can make $|T_{i,x}|$, $|T_{i,\rho}| < K_0/[2(2n)^{1/2}]$.

Also, for each $i \in \{1, 2, ..., n-1\}$, by setting $x_j = 0$ for $j \neq i$ in $R(x, \rho, y, \eta)$ we will get functions of x_i, ρ, y, η in this form:

$$g_i(x_i, \rho, y, \eta)x_i^2 + \rho\phi_i(x_i, \rho, y, \eta).$$

We may assume

$$|g_i(x_i, \rho, y, \eta)|, |D_1g_i(x_i, \rho, y, \eta)|, |D_1\phi_i(x_i, \rho, y, \eta)| \le C$$

where $C > 3K(2n)^{1/2}/K_0 > 2$. Let

$$\gamma = \min(\gamma', 1/16, K_0/[4C(2n)^{1/2}], \rho_1).$$

Fix $0 < s < \gamma$ and $0 \neq w \in K_{0,s}(B) \cap U_n(0, \gamma)$. Then

(4)
$$K_{0,s}(B) \cap U_n(0,\gamma) = K_{0,s}(B \cap U_n(0,2\gamma)) \cap U_n(0,\gamma),$$

(5)
$$(w - B) \cap K_{0,s} = (w + K_{0,4\gamma}) \cap K_{0,s}.$$

Therefore, writing $w = (t, \theta) = \rho(y, \eta)$ with $|(y, \eta)| = 1$ and using (3) we obtain

$$(w-B) \cap K_{0,s} = \{(x,h(x)) \cap K_{0,s} : \Phi(x,\rho,y,\eta) = 0\}$$

giving us (i) of Part 1.

Furthermore, if $0 \neq w \in K_{0,s}(B) \cap U_n(0, \gamma)$ where $0 < s < \gamma$ and $|x| < \gamma$, then from (4) and (2) we have $0 \neq w \in X(0, \infty, T_0(B), 1/2)$. Since $T_0(B) = \mathbb{R}^{n-1} \times \{0\}$ and $w = \rho(y, \eta), |y|^2 + |\eta|^2 = 1$, there exists $i \in \{1, 2, ..., n - 1\}$ for which $|y_i| \geq [2(n-1)]^{-1/2} > (2n)^{-1/2}$. But then

$$|D_i\Phi(x, \rho, y, \eta)| = |2k_iy_i + T_{i,x} + T_{i,\rho}| \ge K_0/(2n)^{1/2} \ge 1/C.$$

Also, for $j = 1, 2, \ldots, n - 1, j \neq i$, we have

$$|D_i\Phi(x, \rho, y, \eta)/D_i\Phi(x, \rho, y, \eta)| \le 3(2n)^{1/2}K/K_0$$

This proves (ii) of Part 1.

PART 2. Let $0 < s < \gamma/4nC$ and $\rho, \eta \in \mathbb{R}, y \in \mathbb{R}^{n-1}$ be given with $|y|^2 + |\eta|^2 = 1$, $|\rho| < \gamma$ and $|y_i| > (2n)^{-1/2}$. Let $|a_i| < Csn$ be such that $\Phi_i(a_i, \rho, y, \eta) = 0$. If $|x_i| < Csn$ and $\Phi_i(x_i, \rho, y, \eta) = 0$, then $x_i = a_i$.

PROOF. Suppose $|c_i| < Csn$. Then

$$|\Phi_{i}(c_{i}, \rho, y, \eta)| = |2k_{i}(a_{i} - c_{i})y_{i} + [g_{i}(a_{i}, \rho, y, \eta)a_{i}^{2} - g_{i}(c_{i}, \rho, y, \eta)c_{i}^{2}] + \rho[\phi_{i}(a_{i}, \rho, y, \eta) - \phi_{i}(c_{i}, \rho, y, \eta)]|.$$

Applying the mean value theorem to g_i and ϕ_i and using the bounds on g_i , $D_1 g_i$, $D_1 \phi_i$ one can show that since $Csn < \gamma$ this expression is not less than $|a_i - c_i| K_0/(2n)^{1/2}$.

PART 3. If $0 < s < \gamma/4nC$ and

$$0\neq w=\rho(y,\eta)\in K_{0,s/C}\big(B\cap \operatorname{U}_n(0,2\gamma)\big)\cap\operatorname{U}_n(0,\gamma)\quad with\ \big|(y,\eta)\big|=1,$$

then there exists $i \in \{1, 2, ..., n-1\}$ (depending only on y) such that $|y_i| > (2n)^{-1/2}$. Corresponding to such an i there is a C^{∞} function

$$\psi_{w,i}$$
: $\mathbf{U}_{n-2}(0, s/C) \rightarrow \mathbf{R}$

such that

(i) If
$$|z| < s/C$$
, then

$$\Phi(\sigma_i(z), \rho, y, \eta) = 0$$

where we define

$$\sigma_i(z) = (z_1, \ldots, z_{i-1}, \psi_{w,i}(z), z_i, \ldots, z_{n-2}) \quad (\psi_{w,i}(z) \text{ in ith place}).$$

(ii)

$$|\psi_{w,i}(0)| < 2ns.$$

(iii) If
$$x \in \mathbb{R}^{n-1}$$
, $|x| < s/C$ and $\Phi(x, \rho, y, \eta) = 0$, then $x = \sigma_i(\pi_i x)$.

It follows that

$$H^{n-2}[(w-B)\cap K_{0,6ns}] \geqslant H_1s^{n-2}$$

where $H_1 = C^{2-n}H^{n-2}[U_{n-2}(0, 1)].$

PROOF. We have $w = g_0 + b_0$ where $g_0 \in K_{0,s/C}$ and $b_0 \in B \cap \mathbf{U}_n(0, 2\gamma)$. Set $g_0 = (x_0, h(x_0))$ where $x_0 \in \mathbf{R}^{n-1}$. By Part 1(i), $\Phi(x_0, \rho, y, \eta) = 0$. In view of (ii) of Part 1, we may assume that $|y_{n-1}| > (2n)^{-1/2}$ and $|D_{n-1}\Phi(x, \rho, y, \eta)| > 1/C$ for $|x| < \gamma$. We will identify $\mathbf{R}^{n-2} \times \mathbf{R} = \mathbf{R}^{n-1}$; denote $x_0 = (z_0, \zeta_0)$. By the implicit function theorem there exist a $\delta > 0$ and a C^{∞} function ψ_{δ} : $\mathbf{U}_{n-2}(z_0, \delta) \to \mathbf{R}$ such that $\psi_{\delta}(z_0) = \zeta_0$ and $\Phi((z, \psi_{\delta}(z)), \rho, y, \eta) = 0$, $|(z, \psi_{\delta}(z))| < \gamma/2$ for $|z - z_0| < \delta$, and the relations

(*)
$$\Phi(x', \rho, y, \eta) = 0$$
, $|x'_{n-1} - \psi_{\delta}(\pi_{n-1}x')| < \delta$, $|\pi_{n-1}x' - z_0| < \delta$ hold only in case $x'_{n-1} = \psi_{\delta}(\pi_{n-1}x')$. Since ρ, y, η are all fixed we may write $\Phi(z, \psi_{\delta}(z))$ in place of $\Phi((z, \psi_{\delta}(z)), \rho, y, \eta)$. We claim that δ may be assumed to be greater than $2s/C$.

Let S be the set of all $\delta > 0$ corresponding to which there exists ψ_{δ} as above and let $\delta_0 = \text{lub } S$. We may assume $\delta_0 < 2s/C$. Since the ψ_{δ} are unique we conclude that $\delta_0 \in S$ with $\bigcup \{\psi_{\delta} : \delta \in S\} = \psi_{\delta_0}$. Set $\psi = \psi_{\delta_0}$. By Part 1(ii), $|D_j\psi| < C$, $j \in \{1, 2, \ldots, n-2\}$. Thus ψ is Lipschitz, and hence uniformly continuous in $U_{n-2}(z_0, \delta_0)$. Therefore ψ has a continuous extension to the Closure of $U_{n-2}(z_0, \delta_0)$. Let z be such that $|z-z_0| = \delta_0$ and denote $\zeta = \psi(z)$. Since Φ is continuous, $\Phi(z, \zeta) = 0$. By the mean value theorem and continuity of ψ , $|\zeta| < 2ns$. Also |z| < 3s, so $|(z, \zeta)| < 4ns < \gamma$. Thus $D_{n-1}\Phi(z, \zeta) \neq 0$. Hence ψ has a C^{∞} extension in a neighborhood of the compact set Clos $U_{n-2}(z_0, \delta_0)$ [H, p. 23] which contradicts the maximality of δ_0 . Writing $\psi_{w,i} = \psi$ we conclude that (i) and (ii) hold. Note that it also follows from what we have shown that

$$((z,\zeta),h(z,\zeta)) \in K_{0,6ns}$$
 for $|z| \le s/C$ and $\psi(z) = \zeta$.

Thus by Part 1(i) we conclude that

$$\begin{aligned} \mathbf{H}^{n-2} \big[(w-B) \cap K_{0,6ns} \big] \\ & > \mathbf{H}^{n-2} \big[P_{n-1} \big((w-B) \cap K_{0,6ns} \big) \big] \\ & \qquad \text{where } P_{n-1} \big(x_1, \dots, x_{n-1}, x_n \big) = (x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1} \\ & > \mathbf{H}^{n-2} \big[\mathbf{U}_{n-2}(0, 1) \big] (s/C)^{n-2}. \end{aligned}$$

Finally, fix $x \in \mathbb{R}^{n-1}$ such that |x| < s/C and $\Phi(x, \rho, y, \eta) = 0$. Choosing $\psi'_{w,n-1}$ as above with x_0 replaces by x we infer from Part 2 that $\psi_{w,n-1}(0) = \psi'_{w,n-1}(0)$. Thus by (*)

$$\psi'_{w,n-1}|\mathbf{U}_{n-2}(0,s/C) = \psi_{w,n-1}|\mathbf{U}_{n-2}(0,s/C)$$

which proves (iii).

Part 4. There exist $0 < \alpha_0 < 1$, $0 < s_0 < \gamma/4nC$, $0 < \delta_0 < \gamma$ and for each $i \in \{1, 2, ..., n-1\}$ a positive integer m_i such that the following is true: Let

$$W = \mathbb{R}^{n-1} \times \mathbb{R} \cap \{(y, \eta) : |(y, \eta)| = 1, |\eta| \le \alpha_0 s_0\}.$$

For each $i \in \{1, 2, ..., n-1\}$ and $j \in \{1, 2, ..., m_i\}$ there exist $\delta_{ij} > 0$, $(y_{ij}, \eta_{ij}) \in W_i = W \cap \{(y, \eta): |(y, \eta)| = 1, |y_i| \ge [2(n-1)]^{-1/2}\}$ and $\theta_{ij}: \mathbb{R}^{n-2} \cap \{z: |z| < \delta_{ij}\} \times \mathbb{R} \cap \{\rho: |\rho| < \delta_{ij}\} \times (\mathbb{R}^{n-1} \times \mathbb{R}) \cap \{(y, \eta): |(y, \eta)| = 1, |(y, \eta) - (y_{ij}, \eta_{ij})| < \delta_{ij}, |y_i| > (2n)^{-1/2}\} \to \mathbb{R}$ all having the same Lipschitz constant H_0 , such that for each $(y_0, \eta_0) \in W$ there exist i and j for which:

- (i) $\mathbb{R}^{n-1} \times \mathbb{R} \cap \{(y, \eta): |(y, \eta)| = 1, |(y, \eta) (y_0, \eta_0)| < \delta_0\} \subset \mathbb{R}^{n-1} \times \mathbb{R}$ $\cap \{(y, \eta): |(y, \eta)| = 1, |(y, \eta) - (y_{ij}, \eta_{ij})| < \delta_{ij}, |y_i| > (2n)^{-1/2}\}.$
- (ii) If $|\rho| < \delta_0$, $(y, \eta) \in \mathbb{R}^{n-1} \times \mathbb{R} \cap \{(y', \eta'): |(y', \eta')| = 1, |(y', \eta') (y_0, \eta_0)| < \delta_0\}$ and $|z| \in \mathbb{R}^{n-2}$ with $|z| < \delta_0$, then

$$|\theta_{ii}(z, \rho, y, \eta)| < Cs_0 n$$

and

$$\Phi(\sigma_{ii}(z, \rho, y, \eta), \rho, y, \eta) = 0$$

where we define

$$\sigma_{ij}(z, \rho, y, \eta) = (z_1, \dots, \theta_{ij}(z, \rho, y, \eta), \dots, z_{n-2}) \quad (\theta_{ij} \text{ in ith place}).$$

PROOF. Using differentiability of h together with Lemma 1 and the fact that $0 \in B$, we infer the existence of $0 < s_0 < \gamma/4nC$, and $0 < \alpha_0 < 1$ such that

Clos
$$X(0, \gamma/2, T_0(B), \alpha_0 s_0) \subset K_{0,s/C}(B) \cap U_n(0, \gamma)$$

$$\subset \mathbf{X}(0,\,\infty,\,\mathbf{T}_0(B),\,1/2)\cup\{0\}.$$

We may assume that i = n - 1; fix $(y, \eta) \in W_{n-1}$ and let $0 < |\rho| < \gamma/2$. Then

$$0 \neq \rho(y, \eta) \in \operatorname{Clos} X(0, \gamma/2, T_0(B), \alpha_0 s_0) \subset K_{0, s/C}(B) \cap U_n(0, \gamma).$$

Let $\psi_{\rho(y,\eta),n-1}$ be the C^{∞} function found in Part 3. Observing that i is independent of ρ , we conclude using Part 3(i), (ii) and continuity of Φ at $\rho = 0$ that there exists $a_{n-1} \in \mathbf{R}$ such that $\Phi((0, a_{n-1}), 0, y, \eta) = 0$ and $|a_{n-1}| \leq 2ns < Cns_0$. Also we infer from Part 1(ii) that $|D_{n-1}\Phi((0, a_{n-1}), 0, y, \eta)| > 1/C$. Using the implicit function theorem at each of the points $((0, a_{n-1}), 0, y, \eta) \in \mathbf{R}^{n-1} \times \mathbf{R} \times \mathbf{R}^{n-1} \times \mathbf{R}$ where $(y, \eta) \in W_{n-1}$ together with the Lebesgue covering lemma, we easily infer (i) and (ii) by noting that if $(y_0, \eta_0) \in W$ then

 $(y_0, \eta_0) \in \text{Clos } \mathbf{X}(0, 1, \mathbf{T}_0(B), \alpha_0 s_0) \subset \mathbf{X}(0, \infty, \mathbf{T}_0(B), 1/2) \cup \{0\};$ consequently there exists an $i \in \{1, 2, \ldots, n-1\}$ such that

$$|y_{0i}| \ge [2(n-1)]^{-1/2}$$

and so $(y_0, \eta_0) \in W_i$.

Part 5. There exists $0 < \beta_0 < 1$ such that if $0 < s < \min(\beta_0 s_0, \delta_0)$, $0 < r < \delta_0$ and $0 \neq w_0 = \rho_0(y_0, \eta_0) \in K_{0,s/C}(B) \cap U_n(0, r)$ with $|(y_0, \eta_0)| = 1$, then there exist $i \in \{1, 2, ..., n-1\}$ and $j \in \{1, 2, ..., m_i\}$ such that whenever $0 \neq w = \rho(y, \eta) \in K_{0,s/C}(B) \cap U_n(0, r)$ with $|(y, \eta)| = 1$ and $|(y, \eta) - (y_0, \eta_0)| < \delta_0$, we have

$$K_{0,s/C} \cap (w-B) \subset \{(\sigma_{ij}(z,\rho,y,\eta), h \circ \sigma_{ij}(z,\rho,y,\eta)): |z| \leq s/C\}.$$

It follows that

$$H^{n-2}[K_{0,s/C}\cap (w-B)] \leq H_2(s/C)^{n-2}$$

where H_2 is a real number which does not depend on s, w and w_0 .

PROOF. We note that there exists $0 < \beta_0 < 1$ such that

$$K_{0,\beta_0s_0/C}(B) \cap U_n(0,\gamma/2) \subset \operatorname{Clos} X(0,\gamma/2,T_0(B),\alpha_0s_0).$$

Therefore $(y_0, \eta_0) \in W$; choosing $i \in \{1, 2, ..., n-1\}$ and $j \in \{1, 2, ..., m_i\}$ by Part 4(i) we see that if $0 \neq w = \rho(y, \eta) \in K_{0,s/C}(B) \cap U_n(0, r)$ with $|(y, \eta)| = 1$ and $|(y, \eta) - (y_0, \eta_0)| < \delta_0$, then $|y_i| > (2n)^{-1/2}$. Thus if $(x, h(x)) \in K_{0,s/C} \cap (w - B)$, then by Parts 1 and 3 there exists a C^{∞} function $\psi_{w,i}$ such that

$$x = \sigma_i(\pi_i x) = (x_1, \ldots, \psi_{w,i}(\pi_i x), \ldots, x_{n-1}).$$

We infer from Part 4(ii) and Part 2 that we must have

$$\theta_{ij}(\pi_i x, \rho, y, \eta) = \psi_{w,i}(\pi_i x),$$

hence $x = \sigma_{ij}(\pi_i x, \rho, y, \eta)$. The desired inclusion follows. Now the map F defined by

$$F(x) = (x, h(x)), \qquad x \in U_0,$$

is Lipschitzian since h is Lipschitzian on U_0 ; let M be a Lipschitz constant for F. Furthermore, $1 + H_0$ is a Lipschitz constant for σ_{ii} . Therefore,

$$\mathbf{H}^{n-2}\big[K_{0,s/C}\cap(w-B)\big]$$

$$\leq M^{n-2}H^{n-2}[R^{n-1} \cap \{\sigma_{ij}(z, \rho, y, \eta): |z| < s/C\}] \leq H_2(s/C)^{n-2}$$

where $H_2 = [M(1 + H_0)]^{n-2} \mathbf{H}^{n-2} [\mathbf{U}_{n-2}(0, 1)]$. This completes the proof of Part 5.

Combining Part 3 and Part 5 and noting (4) we get the desired lemma.

LEMMA 3. Let A be a Suslin subset of \mathbb{R}^n . Then \mathbb{H}^{n-1} almost all $g \in -B$ satisfy one of the following three conditions:

(i) For some $\varepsilon > 0$,

$$\lim_{s\to 0^+} \sup_{0< r<\varepsilon} (rs)^{-1} \phi \big[A\cap K_{g,s}(B)\cap \mathbf{U}_n(0,r) \sim \{0\}\big] = 0.$$

(ii) For all $\varepsilon > 0$,

$$\lim_{s\to 0^+} \sup_{0< r<\varepsilon} (rs)^{-1} \phi \big[A\cap K_{g,s}(B)\cap U_n(0,r) \sim \{0\}\big] = \infty.$$

(iii)
$$0 \in \operatorname{Clos}[A \cap (g + B) \sim \{0\}].$$

PROOF. The proof is similar to that of [B, 3.7].

Let r_2 be as in Lemma 2. We may assume $A \subset U_n(0, r_2)$. Consider the map $F: -B \times B \to \mathbb{R}^n \times -B$ with F(g, b) = (g + b, g). Denote $\Phi = F(-B \times B)$. Also, let

$$\pi_1: \mathbb{R}^n \times (-B) \to \mathbb{R}^n \text{ with } \pi_1(u,g) = u$$

and

$$\pi_2: \mathbb{R}^n \times (-B) \to -B \text{ with } \pi_2(u,g) = g$$

denote the projection maps.

For $u \in \mathbb{R}^n$ denote $\Phi_u = \pi_1^{-1}\{u\} \cap \Phi$. Thus

$$\Phi_{u} = \{(u, g) : g \in (u - B) \cap (-B)\},\$$

and it follows that for $g \in -B$ and s > 0

$$\Phi_u \cap \pi_2^{-1}(K_{g,s}) = \{(u,h): h \in K_{g,s} \cap (u-B)\}.$$

Let ϕ' be the measure on Φ such that for $S \subset \Phi$,

$$\phi'(S) = \int_{A}^{\bullet} \mathbf{H}^{n-2}(\Phi_u \cap S) \ d\phi u.$$

Now, for each positive integer ν we introduce the measure Ψ_{ν} over (-B) defined by

$$\Psi_{\nu}(T) = \sup_{0 < r < 1/\nu} \phi' \Big[\pi_1^{-1} \big(\mathbf{U}_n(0, r) \big) \cap \pi_2^{-1}(T) \cap \Phi \Big] r^{-1}$$

for $T \subset -B$. Let

$$P_{\nu} = (-B) \cap \left\{ g: \lim_{s \to 0^{+}} \left[\Psi_{\nu}(K_{g,s}) / s^{n-1} \right] = 0 \right\},$$

$$Q_{\nu} = (-B) \cap \left\{ g: \lim_{s \to 0^{+}} \left[\Psi_{\nu}(K_{g,s}) / s^{n-1} \right] = \infty \right\},$$

$$R_{\nu} = \pi_{2} \left[\pi_{1}^{-1} \left(A \cap U_{n}(0, \nu^{-1}) \right) \cap \Phi \right],$$

$$P = \bigcup_{\nu=1}^{\infty} P_{\nu}, \quad Q = \bigcap_{\nu=1}^{\infty} Q_{\nu}, \quad R = \bigcap_{\nu=1}^{\infty} R_{\nu}.$$

It follows that $\mathbf{H}^{n-1}[(-B) \sim (P \cup Q \cup R)] = 0$.

Using Lemma 2 we complete the proof by proceeding as in the proof of [B, 3.7].

LEMMA 4. Let A be a Suslin subset of \mathbb{R}^n with $\phi(A) < \infty$. Then

$$\phi \times \mathbf{H}^{n-1}[A \times B \sim (S_{4,1} \cup S_{4,2} \cup S_{4,3})] = 0.$$

PROOF. Let us fix $a \in \mathbb{R}^n$ and $(a, b) \in \{a\} \times B$. We note that $\tau_{-a}(A)$ is a Suslin set. Also $(\tau_{-a})_{\#}\phi$ is a nonnegative measure such that closed sets are $(\tau_{-a})_{\#}\phi$ measurable. Consequently, replacing A and ϕ in Lemma 3 by $\tau_{-a}(A)$ and $(\tau_{-a})_{\#}\phi$ we see that

$$H^{n-1}[\{a\} \times B \sim S_{4,1} \cup S_{4,2} \cup S_{4,3}] = 0.$$

We infer from [B, 4.1–4.2] that $S_{A,1}$, $S_{A,2}$, $S_{A,3}$ are Suslin sets. Also, $\phi(A) < \infty$, hence we can apply Fubini's theorem to obtain our assertion.

LEMMA 5. If A is a purely $(\phi, 1)$ unrectifiable Suslin subset of \mathbb{R}^n such that $\phi(A) < \infty$ and $\phi(W) = 0$ whenever $W \subset A$ and $H^1(W) = 0$, then

$$\phi \times \mathbf{H}^{n-1} [A \times B \cap S_{A,1}] = 0.$$

PROOF. This is the special case of [B, 4.6] where $G = X = \mathbb{R}^n$.

LEMMA 6. If A is a Suslin subset of \mathbb{R}^n and $\phi(A) < \infty$, then

$$\mathbf{H}^n\big[f_0(A\times B\cap S_{A,2})\big]=0.$$

PROOF. This is immediate from [B, 4.7] with $G = X = \mathbb{R}^n$.

LEMMA 7. Let A be a Suslin subset of \mathbb{R}^n with $\mathbb{H}^1(A) < \infty$. Then

$$\mathbf{H}^n\big[\,f_0(A\times B\,\cap\,S_{A,3})\,\big]=0.$$

PROOF. Since B is separable it is sufficient to show that

$$\mathbf{H}^n\big[f_0(A\times B_0\cap S_{A,3})\big]=0$$

where $B_0 = B \cap U_0$, U_0 being an open subset of \mathbb{R}^n with $\mathbb{H}^{n-1}(B_0) < \infty$.

Now, by [F1, 2.10.45] and [F1, 2.10.25] be conclude that

$$\int_{\mathbb{R}^{n}}^{\bullet} H^{0}(A \times B_{0} \cap f_{0}^{-1} \{g\}) dH^{n}g \leq C_{1}H^{n}(A \times B_{0}) < \infty$$

where C_1 is a positive constant. Thus

$$\mathbf{H}^{n}\Big[\mathbf{R}^{n}\cap\big\{g\colon\mathbf{H}^{0}\big(A\times B_{0}\cap f_{0}^{-1}\{g\}\big)=\infty\big\}\Big]=0,$$

and it is not difficult to show that

$$f_0[A \times B_0 \cap S_{A,3}] \subset \{g: \mathbf{H}^0(A \times B_0 \cap f_0^{-1} \{g\}) = \infty\}.$$

THEOREM 1. Suppose $E \subset \mathbb{R}^n$ with $\mathbf{H}^1(E) < \infty$. Then there exists a countably 1-rectifiable Borel subset R of \mathbb{R}^n such that $(E \sim R)$ is purely $(\mathbf{H}^1, 1)$ unrectifiable and

$$(E \sim R) \cap (g + B) = \emptyset$$

for \mathbf{H}^n almost all $g \in \mathbf{R}^n$.

Furthermore, if in addition E is H^1 measurable and $E \cap (g + B) = \emptyset$ for H^n almost all $g \in \mathbb{R}^n$, then $H^1(E \cap R) = 0$, hence E is purely $(H^1, 1)$ unrectifiable.

PROOF. Since \mathbf{H}^1 is Borel regular, we may assume E to be Borel. By maximizing the finite measure $\mathbf{H}^1 \sqsubseteq E$ on the class of countably 1-rectifiable Borel subsets of \mathbf{R}^n and using [F1, 3.2.14] we obtain a countably 1-rectifiable Borel subset R of \mathbf{R}^n such that $A = (E \sim R)$ is purely (\mathbf{H}^1 , 1) unrectifiable. Applying [B, 4.1 and 4.2] with $G = X = \mathbf{R}^n$ we infer that $S_{A,1}$, $S_{A,2}$, $S_{A,3}$ are Suslin sets. Using Lemmas 4-7 together with [F1, 2.10.25] we easily conclude that

$$\mathbf{H}^n \big[f_0(A \times B) \big] = 0$$

which is equivalent to $A \cap (g + B) = \emptyset$ for H^n almost all $g \in \mathbb{R}^n$.

Now let E be H^1 measurable with $E \cap (g + B) = \emptyset$ for H^n almost all $g \in \mathbb{R}^n$. Observe that by [F1, 3.2.28] we may assume R to be a subset of a proper 1-dimensional submanifold R_0 of class 1 of \mathbb{R}^n . We may also assume $0 \in R$ and $\mathbb{R}e_n = \mathbb{T}_0(R_0)$ where $\{e_1, \ldots, e_n\}$ is the standard orthonormal basis for $\mathbb{T}_0(\mathbb{R}^n) = \mathbb{R}^n$. Let

$$M=\mathbf{S}^{n-1}\cap\{u\colon u\cdot e_n=0\}.$$

Assuming B is oriented with a unit normal vector field ν , let us consider the Gauss map $\eta: B \to S^{n-1}$ defined by $\eta(b) = \nu(b) \in \mathbb{R}^n$ for $b \in B$. Since the Gaussian curvature is nonzero at every point of B, η has nonzero Jacobian at every point. Therefore by the inverse function theorem $\eta(B)$ is an open subset of S^{n-1} and thus $H^{n-1}[\eta(B)] > 0$. There therefore exists $b \in B$ at

which $\eta(b) \not\in M$. We can assume b = 0; thus $e_n \not\in T_0(B)$ and we see that $\mathbf{R}e_n + \mathbf{T}_0(B) = \mathbf{R}^n$.

For r > 0 denote $B_r = B \cap U_n(0, r)$. Since $(E \cap R) \times B_r$ is H^n measurable application of [F1, 3.2.3] gives

$$\int_{(E \cap R) \times B_r} J(f_0 | R_0 \times B) dH^n = \int_{\mathbb{R}^n} H^0 [(f_0 | (E \cap R_0) \times B_r)^{-1} \{g\}] dH^n g.$$

Now the integral on the right is zero by our hypothesis. Moreover, if $\{u_1, \ldots, u_{n-1}\}$ is an orthonormal basis of $T_0(B)$ then

$$J(f_0|R_0\times B)(0,0)=|e_n\wedge u_1\wedge\cdots\wedge u_{n-1}|>0.$$

Consequently, $H^n[(E \cap R) \times B_r] = 0$ for some r > 0, whence we conclude using [F1, 3.2.25] that $H^1(E \cap R) = 0$.

If $u \in \mathbb{R}^n$, the k-dimensional upper density of ϕ at u is

$$\theta^{*k}(\phi, u) = \lim_{r \to 0^+} \sup \alpha(k)^{-1} r^{-k} \phi(\mathbf{U}_n(u, r))$$

where $\alpha(k)$ is the volume of the unit k-ball $U_k(0, 1)$.

THEOREM 2. Suppose $W \subset \mathbb{R}^n$, $\phi(W) < \infty$, $\phi(S) = 0$ whenever $S \subset W$ and $H^1(S) = 0$ and $\theta^{*1}(\phi \sqsubseteq W, u) > 0$ for ϕ almost all $u \in W$. Then there exists a countably $(\phi, 1)$ -rectifiable and ϕ measurable set Q such that $(W \sim Q)$ is purely $(\phi, 1)$ unrectifiable and

$$(W \sim Q) \cap (g + B) = \emptyset$$

for \mathbf{H}^n almost all $g \in \mathbf{R}^n$.

Furthermore, if in addition W is a Borel set such that $W \cap (g + B) = \emptyset$ for H^n almost all $g \in \mathbb{R}^n$, then W is purely $(\phi, 1)$ unrectifiable.

PROOF. Applying Theorem 1 one proceeds in a manner similar to the proof of [B, 5.3].

BIBLIOGRAPHY

[B] J. E. Brothers, The (ϕ, k) rectifiable subsets of a homogeneous space, Acta Math. 122 (1969), 197-229. MR 39 #2944.

[BE] A. S. Besicovitch, On the fundamental geometric properties of linearly measurable plane set of points. III, Math. Ann. 116 (1939), 349-357.

[F1] H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969. MR 41 #1976.

[F2] _____, The (ϕ, k) rectifiable subset of n-space, Trans. Amer. Math. Soc. 62 (1947), 114–192. MR 9, 231.

[FF] H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458-520. MR 23 #A588.

[H] M. R. Hestenes, Calculus of variations and optimal control theory, Wiley, New York, 1966. MR 34 #3390.

[KN] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. 2, Interscience, New York, 1969. MR 38 #6501.

DEPARTMENT OF MATHEMATICS, BOWDOIN COLLEGE, BRUNSWICK, MAINE 04011

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, INDIANA 47401

Current address: Department of Mathematical Sciences, Susquehanna University, Selinsgrove, Pennsylvania 17870